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Abstract

Convolutional Neural Networks (CNNs) have been
widely used in the semantic segmentation of medical im-
ages. Current CNN-based approaches don’t fully exploit
information about the local neighbourhood of the pixels be-
ing classified. Furthermore, the average pixel-wise accu-
racy gives the average likelihood of correct classification
across all the pixels in the frame where this likelihood is
actually not the same for every pixel. We propose a new ap-
proach to address these issues by using multiple neighbour-
hoods around the pixel of interest and aggregating different
hypotheses about the pixel’s label. The results produced by
this method are comparable with the state of the art solu-
tions. In addition, the method is capable of detecting less
accurate regions by assessing the consistency of labelling
while shifting the sampling frame across these pixels.

1. Introduction

Convolutional neural networks (CNNs) are characterised
by their weight sharing and down-sampling in which the
former aims to detect local dependencies and the latter ap-
plies the resolution decrease to the feature maps. This helps
to sustain location and noise invariance in CNN-based ar-
chitectures [9]. It also provides more abstract features of a
lower resolution by moving upward through the pyramid of
convolutional layers until single or multiple concepts can be
deduced at the apex of the abstraction pyramid [22].

CNNs show a good performance in many semantic seg-
mentation problems by inferring the label for a single pixel
from all the pixel values in the sampling frame. Due to the
resolution decrease in the abstraction pyramid, the output
can be noisy and less accurate at object boundaries [14].
In practice, even increasing the depth of the architecture
cannot help to alleviate the deterioration of the accuracy in

these regions. We propose a new approach to address this is-
sue by employing multiple neighbourhoods around the pixel
of interest and inferring the pixel label based on a set of po-
tential labels extracted from different focus frames.

2. Related Works

Research on the deterioration of segmentation accuracy
at object boundaries using feed-forward CNN-based archi-
tectures can be roughly divided into three categories: regu-
lating the local dependencies in feature maps, fully convo-
lutional networks, and encoder-decoder architectures.

Chen et al. [5] apply conditional random fields (CRF)
to a deep CNN’s outputs during training. Similarly, Liu
et al. [15] employed a CRF to regulate CNN feature maps
to avoid premature decision-making and add more homo-
geneity to the label space. Toca et al. [26] introduced a new
convolutional layer called an “AutoMarkov Layer” which is
capable of applying local dependencies between the feature
maps to the loss function. CRFs can help segment domi-
nant regions such as homogeneous backgrounds or salient
objects rather than small regions or the areas with a higher
frequency of variation in labelling. This is an impediment
to employing this technique for object boundary detection
for images with high frequency of variations in labelling.

Fully convolutional networks (FCNs) [16] map each fea-
ture space onto a bigger frame(s) and the corresponding
interpolation function is learnt during back-propagation.
FCNs provide a simultaneous classification of all pixels in
the frame which includes local dependencies to the feature
space and output layer. FCNs are sensitive to the scale of
objects, so that if the object is very big or too small com-
pared with the size of the receptive field, the segmentation
accuracy may decrease. The fact that the reconstruction
of the features based on FCN architectures are not capable
of approximating functions with a high frequency of vari-
ation can be considered as an another shortcoming of this
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approach.
Various encoder-decoder methods have been proposed to

deal with localisation accuracy [2, 3, 4, 18], but none of
them fully exploit context information. Moreover, due to
the non-homogeneity of the average accuracy in the sam-
pling frame, the correct classification rate for a particular
pixel can be affected by the position of the pixel in the frame
[17].

In order to address the lack of sufficient context infor-
mation in the sampling frame, Roth et al. [21], Setio et al.
[24], and van Grinsven et al. [27] sample the input image by
shifting, scaling, or rotating these frames randomly several
times and feeding them into multiple parallel CNN archi-
tectures to produce a set of probabilities. Then a cascaded
classifier is employed to infer the right label for the pixel of
interest from the set of generated probabilities.

Despite the fact that the authors could successfully in-
clude more context information in training and testing
phases, the techniques are unable to model the interactions
between neighbouring output pixels directly. To remedy
this issue, we proposed to shift the sampling frames with a
simple deterministic pattern and feed them into a set of par-
allel convolutional encoder-decoder architectures. A set of
cascaded classifiers can be used to label the region of inter-
est, accurately. Unlike [21, 24, 27] in which multiple par-
allel CNN architectures are engaged in a single expensive
training phase, our approach is based on only one trained
encoder-decoder architecture.

3. Shifting the Sampling Frames
With a convolutional encoder-decoder architecture of

enough depth for a particular problem, the error can be de-
rived from three main sources: lack of enough spatial con-
text information in the dataset to generalise the learnt hy-
pothesis, the localisation issue of DL-based approaches and
the positional average accuracy across the sampling frame.

The former can be addressed by increasing the size of the
sampling frame which can result in a noticeable growth in
the computation cost. The second factor can be thought as
the difficulty in detection of the object boundaries which are
often of regions with a low confidence score (less certainty)
in the classification. Finally, often the closer a pixel is to
the borders of the sampling frame the lower the associated
correct classification rate is [17]. Our approach alleviates
all these three sources of error by incorporating more spatial
context information at run time.

A convolutional encoder-decoder segments all the pixels
in the input frame simultaneously. The network classifies
each pixel based on the neighbouring input pixels and their
corresponding inferred labels in the sampling frame. The
network can segment the whole image at the same time.
In practice, since numerous samples are needed for train-
ing the network, and due to the high computation cost for

training an architecture with a large sampling frame, simul-
taneous segmentation of large images is not practical. Our
solution is to employ non-overlapping sub-frames of the in-
put image for training and testing the network. We propose
to use overlapping frames to generate multiple labels for per
pixel and then intelligently combine the labels.

By shifting the sampling frame across the pixels their
confidence score is usually affected by both the different set
of neighbouring pixels and the position of the pixels in the
sampling frame. The corresponding labels for erroneous
regions are less consistent compared to the ones for other
areas of the image. This characteristic is the core idea to
detect these less accurate regions at runtime.

(a) (b)

Figure 1. Shifting the sampling frame in the runtime: (a) L1, L2,
and L3 are inferred labels for a single pixel based on different
frame positions ; (b) Expansion of the receptive field by shifting
the frame across a pixel.

Given a convolutional encoder-decoder architecture with
an N ⇥ N receptive frame, each pixel in the image can be
classified using N⇥N different sets of neighbouring pixels
by shifting the sampling frame in vertical and horizontal
directions, as shown in Fig. 1.b.

Let I(x, y) and Li(x, y) represent the intensity value and
the corresponding label for a pixel at coordinate (x, y) using
the ith shifted frame for segmenting the pixel, respectively.
Let ⌦ = {!1,!2, ...,!↵} be the set of all possible labels
(classes) where ↵ is the number of classes. The probability
of assigning !j 2 ⌦ to the pixel at coordinate (x, y) can be
interpreted as

P{ Li(x, y) = !j | I(x, y), 8(Li(a, b), I(a, b)) : [(a, b) 2 Fi,

(a, b) 6= (x, y)] }
(1)

where Fi is the set of all pixels in the ith shifted frame and

L(x, y) = {L1(x, y), L2(x, y), ..., L�(x, y)} (2)

and � = N2

J2 where the frames are shifted with the stepsize
of J . Thus, the vector is associated with an (2N � 1) ⇥
(2N � 1) receptive field as is shown in Fig. 1.b.

The vector L(x, y) can be simply mapped onto the
⌦ space by counting the number of occurrence of each
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!j among the elements of L(x, y). Consider W =
{W1,W2, ...,W↵} as the corresponding label vector in the
⌦ space (assume ↵ < � which is almost always valid).
k W k1= � where k W k1 is the Manhattan norm. As
a result, inclination of W toward one component affects its
scalar projection onto other components. Based on this fact,
we define the consistency of labelling for a pixel as

consistency :=
max (W)

k W k1
(3)

Pixels with high consistency ratio can be thought to be
associated with low information entropy. Consistency and
entropy are highly correlated especially when the number
of classes is moderate. Although the relation between con-
sistency and the corresponding label is not straightforward
(especially in pixels with low consistency rate), we believe
that the higher the consistency, the more likely the assigned
label is to be correct. This conjecture is evaluated in the
experiments we have performed in this work. The correct
label can be inferred from the vector L(x, y) by feeding it
into a classifier.

4. Datasets
We have evaluated our approach using four medical im-

age segmentation datasets. Each has its own unique proper-
ties in terms of size and adjacency of the objects, dominance
of the regions, and presence of noise.

Dataset 1 - greyscale microscopy images of the ex-
cised mouse spinal cord provided by University of Penn-
sylvania Medical Center: Semantic segmentation of these
images offers the potential to study autoimmune diseases
[10] and also brain connectivity and maturation [19] since
myelin volume has an intimate relationship with nerve sig-
nal transmission performance in mammals [11]. Myelin
can be found in lower intensity regions surrounding axons
which are often brighter. However, the relationship between
intensity values and labels is not always straightforward as
there are regions with uniform labels and of a variety of in-
tensity values.

Dataset 2 - retinal vessel segmentation database from
Lincoln School of Computer Science: Estimating the
width of retinal vessels can help to diagnose a variety of
diseases such as arteriosclerosis, diabetic retinopathy, and
so on [1, 13]. Although the edges of retinal vessels are of a
darker material and the internal vessel regions are brighter,
this intensity characteristic is not unique to vessels. In ad-
dition, the presence of noise and very low vessel diameter
make the segmentation task challenging.

Dataset 3 - sclera and eye recognition benchmark-
ing competition (SSERBC 2017): Sclera segmentation is
recognised as an ocular biometric and is of a great practical
importance in many security-based applications [6]. De-
spite the fact that the sclera regions are mostly brighter than

other ocular areas, the segmentation cannot always be accu-
rate as there are regions in the sclera which are of a lower in-
tensity and some parts of the peri-ocular or iris are as bright
as sclera pixels.

Dataset 4 - human lumbar vertebrae lateral X-ray
images provided by Department of Computer Science,
University of Otago: Lumbar vertebrae segmentation has
an important role to play in computer-aided diagnosis of
a variety of pathological conditions such as lumbar wedge
compression, vertebral and intervertebral disc abnormali-
ties, etc [8]. Bone regions are of a variety of intensity values
not very different to the other areas. Although the vertebrae
boundary pixels are roughy brighter than the internal and
external vertebrae regions, the segmentation task cannot be
performed easily due to the presence of noise.

5. Method

5.1. Encoder-Decoder Design

Figure 2. Convolutional encoder-decoder architecture

Our architecture consists of three main structures: en-
coder, fully convolutional, and decoder units (Fig. 2). The
first includes three convolutional layers each followed by
a 2 ⇥ 2 MaxPooling layer. A ReLU activation function is
applied to each MaxPooling unit. There are 8, 64, and 256
3⇥3 convolutional masks in the first, second, and third con-
volutional layers, respectively. Since the receptive field is a
32 ⇥ 32 matrix and due to the resolution decrease through
the MaxPooling layers, there are 256 4⇥ 4 feature maps at
the apex of the encoder’s pyramid of abstractions.

The next layer connects encoder and decoder units using
fully convolutional operation. The un-pooling functions in
the decoder unit remember the sub-sampling indices of the
corresponding MaxPooling layers. The decoder includes
three convolutional layers with 256, 64, and 8 3⇥ 3 masks,
respectively. Each convolutional module placed after its as-
sociated un-pooling unit.

In the architecture designed for the first dataset, a convo-
lutional layer with three 3⇥3 convolutional masks followed
by a SoftMax function infers three classes at the backend
of the decoder unit. These classes are represented in the
first dimension of the 3 ⇥ 32 ⇥ 32 output matrix. Since
the three other datasets are associated with two-class seg-
mentation problems, in their architecture, there is one con-
volutional mask replaced by the three convolutional masks

3



and the SoftMax unit of the former design. The output is a
1 ⇥ 32 ⇥ 32 matrix in which the first dimension represents
the two classes.

5.2. Shifting the Sampling Frames at Runtime

We have applied our technique to the convolutional
encoder-decoder architecture by shifting the sampling
frame across the points with the stepsize J = 4. As a result,
there are eight shifted frames in each direction (horizontal
left, horizontal right, vertical left, and vertical right). The
consistency check has been performed using � = 64 in-
ferred labels for each pixel.

The relation between the consistency ratio and the cor-
rect label needs to be learnt especially at the pixels with low
consistency rate in which the right label cannot be inferred
by just voting for the most frequent one among the set of hy-
pothesised labels. To optimise the performance, these labels
are fed into a multilayer perceptron (MLP) architecture in
which the hidden layer has 256 nodes followed by a hyper-
bolic tangent activation function. For the first dataset, the
output is a three-dimensional vector each dimension corre-
sponds to one of the three classes. The architecture for the
two other datasets includes a one-dimensional output vec-
tor (one node) which is associated with the two classes to
be inferred.

5.3. Training and Experimental Setup

To verify our segmentation approach, we designed the
trials by excluding one image and randomly sampling the
other images of the dataset using 32⇥ 32 sampling frames.
The corresponding labels are 3 dimensional matrices in
which the first dimension represents the three/two classes.
For the first dataset, one of the elements of the first dimen-
sion is 1 while others are 0. In other datasets, the element
is either 1 or -1 indicating the presence or absence of the
sought class. Table 1 shows the distribution of the classes
in the datasets. There are 102000, 70000, 78000, and 76000
samples in the four datasets, in order.

– Class A Class B Class C
Dataset 1 24.8% 43.5% 31.7%
Dataset 2 9.5% 90.5% –
Dataset 3 23.8% 76.2% –
Dataset 4 55.7% 44.3% –

Table 1. Distribution of the datasets

We have implemented all the experiments using the
Torch7 library (www.torch.ch) on an iMac with a 3.2
GHz Core i5 quad-core processor and an 1024 MB NVIDIA
GPU. Detailed information about the training parameters
are shown in Table 2.

LR Epochs BS GPU Training
Setup 1 0.01 25 1 NO 375 min
Setup 2 0.1 10 16 YES 30 min
Setup 3 0.1 5 16 YES 15 min
Setup 4 0.1 7 16 YES 21 min

Table 2. Training setup: Learning Rate (LR), Batch Size (BS)

6. Results

The approach was compared against the most recent and
accurate solutions [7, 17, 20] for the first three datasets.
Since the research on the lumbar vertebrae segmentation is
mainly based on the volumetric imaging techniques (MRI,
CT, etc.) [23, 25] and as the works on X-ray vertebrae im-
ages are mostly devoted to object boundary detection [12],
we are not able to use their reported accuracies as a vali-
dation test against our approach (we employed pixel-wise
accuracy metric for the validation test). The correct clas-
sification rates and the corresponding standard deviations
across the trials are given in Fig. 3.

We used paired sample t-tests to examine the signifi-
cance of the segmentation accuracy between the results pro-
duced by our approach and the ones produced by the base
encoder-decoder technique. For each dataset, the two sets
of samples are the average pixel-wise per-image accuracies,
respective to the techniques. The corresponding P values
for the four datasets are 2.4⇥10�4, 1.1⇥10�4, 4.1⇥10�4,
and 2.5⇥10�4, respectively, indicate a significant (< 0.05)
improvement for all the four datasets.

Figure 3. Comparison between pixel-wise accuracies: As the stan-
dard deviations associated with the state of the art solutions are
not in hand, we only report the corresponding average pixel-wise
accuracies.
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7. Conclusion & Discussion

In this paper, we propose a self-assessment approach
based on the convolutional encoder-decoder architecture.
The method gives the likelihood of correct classification
for each individual pixel in the image which can be im-
portant for a variety of applications. We address the lack
of sufficient spatial context-related information in the sam-
pling frame of encoder-decoder architectures by shifting the
frames across pixels and inferring the correct label from the
set of guessed labels, at runtime.

The method assesses the consistency of the labelling for
the pixel of interest using different shifted sampling frames.
As it can be seen in Fig. 4, the low consistency regions
can be roughly classified into two main groups: the ones
with a high frequency of variations in intensity and the pix-
els with lower classification confidence. While the former
can be seen mostly at object boundaries, the latter can also
be found in homogeneous regions. The learnt hypothesis
differentiates the two sources of low consistency and the
classifier acts accordingly. Examples of compensating for
the lack of accuracy in both the object boundaries and the
homogeneous regions can be found in all the four segmenta-
tion samples in Fig. 4. However, the approach shows higher
performance in correcting the first type of misclassified pix-
els than the ones of the second group.

The higher the consistency rate, the better the classifica-
tion performance. There are many boundaries and edges to
be detected in the first two datasets unlike the others with
many uniform regions.

Since the approach is based on the trained convolutional
encoder-decoder architecture, the computation cost is com-
parable with traditional encoder-decoders, in the training
phase. Assume the simultaneous classification of all pixels
in an N ⇥ N image using convolutional encoder-decoder
takes T seconds. The runtime for the proposed approach is
equal to N

2⇥J

�2⇥T where J is the stepsize (the amount
of time required for the artificial neural network to infer the
right label should also be taken into the consideration).

Our Contributions - The contributions of this work can
be summarised as follows:

• We proposed a self-assessment approach based on the
convolutional encoder-decoder architecture. The tech-
nique gives the likelihood of correct classification for
each individual pixel.

• The current convolutional encoder-decoder ap-
proaches don’t fully exploit information about the
local neighbourhood of the pixels being classified. We
addressed the issue by using multiple neighbourhoods
around the pixel of interest and aggregating different
hypotheses about the pixel’s label. The approach is

capable of inferring the correct label based on the
collected spatial context information at runtime.

• We applied the proposed technique to four medical
image semantic segmentation datasets and the results
show a significant improvement against the state of the
art in three out of the four datasets.
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